Japanese Nara Institute of Science and Technology has made a breakthrough on integrated optical neural stimulation and observation device incorporating an LED and a CMOS image sensor, which will help researchers in the field of optogenetics, which involves the use of light to alter the behaviour of cells.
Compared with a CMOS sensor, which is an approach that has been adopted by engineers at the University of Strathclyde, UK, it is possible to build a similar system with an avalanche photodiode array.
According to lead-author Takashi Tokuda from Nara Institute of Science and Technology, one of the advantages of the avalanche photodiode array is that it can deliver high-speed detection, which is essential for timeresolved fluorescence measurements. But he adds that this type of detector is unsuitable for on-chip imaging of biological cells and tissues, because each of the photodiodes has dimensions of the order of 10 μm.
Japanese Nara Institute of Science and Technology has made a breakthrough on integrated optical neural stimulation and observation device incorporating an LED and a CMOS image sensor, which will help researchers in the field of optogenetics, which involves the use of light to alter the behaviour of cells.
Compared with a CMOS sensor, which is an approach that has been adopted by engineers at the University of Strathclyde, UK, it is possible to build a similar system with an avalanche photodiode array.
According to lead-author Takashi Tokuda from Nara Institute of Science and Technology, one of the advantages of the avalanche photodiode array is that it can deliver high-speed detection, which is essential for timeresolved fluorescence measurements. But he adds that this type of detector is unsuitable for on-chip imaging of biological cells and tissues, because each of the photodiodes has dimensions of the order of 10 μm.